
Extending “Towards 
Monosemanticity”
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“Towards Monosemanticity” Summary

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom 
Conerly, Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askell, Robert 
Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas 
Joseph, Alex Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan 
Hume, Shan Carter, Tom Henighan, Chris Olah. Towards Monosemanticity: 
Decomposing Language Models With Dictionary Learning. 2023. (Anthropic)

https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html


Motivation

● Individual neurons do not have consistent relationships to network behavior 
(Superposition)

○ a small model’s neuron can activate with: academic citations, English dialogue, HTTP 
requests, and Korean text

● What is a better unit of analysis than a neuron?

● Model Steering
○ If we effectively separate individual neurons, we may have more control over model outputs in 

R&D settings.
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Individual Features are Interpretable
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● Using Dictionary Learning to project an MLP output layer with 512 neurons to 
a higher dimension

○ Tested 1x, 8x, 32x, 64x, 128x, 256x (primary results use 8x version)
○ Trained as an autoencoder (input weights as an encoder and output weights as the decoder)

● Generate concepts related to activated tokens using an LLM
○ Bills et al., 2023 (OpenAI) “Language models can explain neurons in language models”

■ Used a few-shot prompt to generate natural language concepts based on a set of (token, 
quantized activation) tuples

■ Validated concepts by prompting the LLM to predict quantized activations for masked 
tokens

Primary Methods
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Evaluations

● Validate feature interpretability / faithfulness
○ Automatically, using an LLM (Bills et al., 2023 OpenAI)

■ computed the Spearman correlation coefficient between the predicted activation and the 
true activations (n=540 per activation)

○ Manually, with a human evaluator scoring interpretability
■ confidence in an explanation
■ consistency of the activations with that explanation
■ consistency of the logit output weights with that explanation
■ specificity
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How Interpretable is the Typical Feature?
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Caveats on Results

● Do features tell us about the model or the data?
○ Use Logit weight inspection, Feature ablation, and Pinned feature sampling
○ Feature ablation results seem convincing

● How much of the model does our interpretation explain?
○ 79% reconstruction loss
○ This number does not necessarily answer the question
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https://transformer-circuits.pub/2023/monosemantic-features/index.html#global-analysis-about-model
https://transformer-circuits.pub/2023/monosemantic-features/index.html#global-analysis-how-much


My Extension
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Why not use a bigger model?

● “overtrain the underlying model”
○ Anthropic hypothesized that a “very high number of training tokens” may cause cleaner 

representations

● smaller dictionaries (autoencoders) can be used
○ Fewer "true features" than larger models, learned by smaller dictionaries are cheaper to train 

and faster to experiment with

● approx. linear feature to logit mapping
○ Theoretical justification that learned features actually reflect the functionality of the model and 

not the underlying data data
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https://transformer-circuits.pub/2023/monosemantic-features/index.html#global-analysis-about-model


Extension: Methods

1. Use distillGPT-2 (42M param., 6 layers)

2. Train autoencoder using last layer’s MLP with limited hyperparam. tuning
a. dictionary_size = {8, 32}

3. Used automated interpretability methods with GPT-4
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Implementation Details

● neelnanda-io/TransformerLens package for interpretability research
○ Relatively small user base so had to handle confusing documentation or limitations of the 

package
● Used slurm script to train various autoencoders on the CS department cluster

● Autoencoders were trained on MLP layer outputs (retrieved using a hook with 
TransformerLens)

○ Full details of the autoencoder can be found in the original Anthropic paper’s appendix
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Extension: Objectives (Assumptions / Evaluation Criteria)

● Test how well the methods from “Toward Monosemanticity” generalize
○ Interpreting a larger model (distillGPT-2)
○ Automated interpretability with a different LLM (GPT-4)

■ Note that the original paper which proposed this method used an older GPT-4

● Assumptions
○ The public API provides the necessary information to perform automated neuron explanations
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Extension: Uncertainty Analysis

● Parameters that affect our result
○ A number of hyperparameters are used which could influence the results

■ Adam optimizer (Learning Rate 1e-4, 𝛃1 0.9, 𝛃2 0.99)
■ L1 Coefficient 3e-4
■ Dictionary size (8x, 32x)
■ Number of tokens to train autoencoder on (2 billion, 3 billion, 4 billion*)

● Token dataset (Pile)
○ Explanation model (GPT-4)
○ Source model for reconstruction (distillGPT-2)

*tested to determine if training on more data would increase reconstruction score, noticed 
performance degradation even when setting a lower learning rate of 1e-5

14



Extension: Results (preliminary)

● Reconstruction scores*
○ 8x: 62.70%
○ 32x: 77.52%

● Attempting to use code from the Bills et al. 
○ API has changed significantly, various parts need to be refactored
○ WIP

*score = ((zero_abl_loss - recons_loss)/(zero_abl_loss - loss))
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Key graphs: Log Freq. of Features
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8x Dictionary

32x Dictionary



Key graphs: Rare Features are more similar than others
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Extension: Limitations

● Reconstruction score optimisation
○ I trained my autoencoders to obtain the maximum reconstruction score
○ I did not validate that this score is a good proxy for good interpretation potential
○ I did not test different hyperparameters’ effects on other outcomes

● The underlying data and models play a key role in this analysis which may 
impact the results
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Questions?
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